
I’ransicnf  Sy:thcsis lJsing a Fourier ‘1’rwnsform  lcnvclope
An Alternative to Swept-Sine Vibration ‘J’csting

SIJIVIMARY

‘1’ransient  vibration tests offer an alternative to the conventional swept-sine vibration test, with
controllable conservatism. A method of deriving a single vibration test transient from several
spacecraft flight transients is described, These tl ansicnts were from different physical locations on
the spacecraft. The test transient was derived by taking the inverse Fourier transform of an envelope
of the Fourier transforms of the flight transients. I’he inverse transformation was performed using
the real and ilnaginary  parts of that Fourier transform forming the envelope amplitude at each
frequency. The test transient therefore has the same flequcncy  content and maximum amplitudes as
the flight transients. A generic test transient was therefore produced that duplicates many operating
conditions at separate physical locations. It could be applied to many different structural
components of a spacecraft, simplifying a vibration test program. ‘l’he transient vibration test
produces significantly less overtest  than a conventional swept-sine vibration test.
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in a complex spacecraft there is significant valiation  in the flight transient vibration environments
occurring at different components and locations. Several transient vibration tests are therefore
required to satisfy each of these vibration environments, A single generic transient vibration test,
applied to each component, would be more desirable and cheaper. Over-test would vary, of course,
between different locations. The conventional swept-sine vibration test produces excessive ovcrtest
regardless of the response characterization used [ 1], This would be more pronounced with a single
generic swept-sine vibration test. IIowever, with a single generic transient test, this would be
mitigated by the fact that transients, in general, provide significantly less over[est than conventional
swept-sine tests [1]. ‘l’he work described herein is an attempt to obtain such a singular generic test.
The work is part ofa larger study [2] to replace the conventional swept-sine vibration test with a
transient vibration test having controllable conservatism. ]n reducing several transient vibration
cnvircmnlcnts  to a single one, a single characterization of the individual transient vibration
environments is commonly used. A typical exa!nple is the enveloping of several shock response
spectra (S1{S) to produce a single representative S1<S [3]. A test transient is then empirically
produced using a sum of decaying sinusoids or wavclcts  [4], so that its SRS approximates that of the
SRS-envelope.  The SRS however, is not unique, and could be representative of many dissimilar
environments. An SRS cannot therefore be analytically transformed back into the time domain.
Other characterizations are available [5], but they too are not uniquely transformable back to the
time domain. The Fourier Transform (FT) characterization, however, is unique and can be
analytically transformed back into the time domain provided the real and imaginary parts of the 1; ’1’
arc available.

‘1’hc feasibility of generating a single test transient tlom the envelope of several flight transient
Vourier  transforms was examined. Ten flight transients representing two launch event conditions at
five different locations on the Cassini spacecraft were used. I’hese locations are correlated to the
launch events according to the nomenclature of I’able 1. “1’hc spacecraft “grid” point and finite



clement model degree  of freedom (DOF) is used to identify the location of the transient. The code is
used herein as a simple transient identifier. One location is in the R coordinate axis for the high gain
antenna (}lGA) support point. Another location is in the R coordinate axis for the remote sensing
platform attachment point. The remaining three locations arc in the Y coordinate axis for each of the
three radioactive thermoelectric generator (R’1’G) bases. Widely separated physical locations and
vibration directions were deliberately used to add generality to the synthesized transient.

‘J’ABI.E 1 - ‘Jhnsirnl locations

Co(ll? Event Grid DOF I)mcript ion Axis
0401 F[J04 11502 R } I(3A Suy~ort  Point + x-l y
1401 FU14 11502 R “1 IGA Support Point ix+y——..
0419 IIJ04 17011 R l{Sl~ Attachment ]’oint Cylindrical
1419 FU14 17011 R l<S1) Attachment Point Cylindrical
0411 FU04 16314 Y + Y RTG Base } IorizoItal
1411 FU14 16314 Y + Y RTG Hase IIorizontal—..——
0414 Fuo4 16324 Y -Y RTG Base }Iorizontal.
1414 31J14 16324 - Y - Y RFJ’G  llase -- 1 loriz,ontal
0417 FLJ04

—
16334 Y “ -I X RTG llase I lori?mtal  “-

—
1417– FLJ14

—.—
16334 ‘ Y -1 X Rrl’G Base } horizontal ‘-

‘1’he flight transients used were from two fllcl depletion shutdown events of the ‘J’itan launch vehicle
first stage operation. One shutdown event is called  FLJ04 and the other FU 14. ‘1’hcse are considered
to be the most critical, in terms of dynamic loads for the components considered. These transients
arc shown in Figures 1 and 2.

The discrete Fourier transform (lll;’l’), ~(.~), of an acceleration time histoly  i(i), is given [6] by:
Ar - 1

Xn, ~- X ~.nc-  j(2wm/A’) ;tll= 0,1, . . . . . . AT.1

no

(1)

whcJ-e j == J-1

For transforming froJn the frequency to time domain, the inverse lll;”l’  is given by:
] ‘: . .

in = --- L ~n,c  j2mwtlA’
;11 =- 0,1, . . . . . .. A’- 1

N Pa o
(2)

I’hc following symbol  definitions apply:

‘JIM expression in , is shorthand for i!(n.l)?”),  where I)T is the sampling interval used to describe
N signal samples of the time history signal -i(l), beginning at time t = O and ending at time ‘I’D.
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27W
“1’hct-e  atcN real and imaginary frequency poinls  ((o )in equation (1) defined by: o) = -

N.IIT
The frequency increment, I)F in the frequency domain tramform (2) is given by:

I)F = 1 /Z/)= 1 /( N.DT)

‘1’hc Fourier transform is normally displayed with the amplitude points ~n, plotted against the real

frequency ~ = o) / 27c . in this format the plot is referred to as a Fourier spectrum. From the right
hand side ofequaticm  (l), this magnitude is written in terms of its real and imaginary parts,
respcctivcl  y:

“{ }
1/2

~. 1
2mtllt 2+ ““ ‘ ~ ~i,, 2rJll~ 2

Xm =- ~in cos - AT z n N
n. O n: (J

(3)

The amplitude spectrum is therefore the quadrature sLJnl  of the real and imaginary components. In
order to perform an inverse transform, both the real and imaginary components of a Fourier
transform spectrum must be provided, as in equation (3), at each frequency increment. lfthe  Fourier
transform spectrum is artificial, as for an envclo~)c  ofscveral  spectra, then the real and imaginary
spcct rum components must be assumed, ‘1’hc assumption used herein was that the envelope phase
was that associated with the IT formin~  the l; ’l’ magnitude envelope at each frequency increment.
The magnitude envelope is determined at each ficqucncy,  m, by taking  the maximum ofali  the
spectra being enveloped. ‘Me envelope spcctruln  amplitude li~m , at the frequency increment m,

would then be obtained from p spectra as:

[1IiXn, z Mfl.ri}tll{]lt Xn,,, , A?ti,,, . . . . . . . . . . Xn,,j,
II

(4)

‘J’he individual amplitudes ~H,,,, are defined in terms of their real and imaginaty  components,

obtained from the separate time-domain transients, as in equation (3), “1’he inverse l~ouricr  transfom
is then calculated  using the real and imaginary components of the liouricr  transform which had the
maximum spectrum amplitude at each fiequcmcy,  m. ‘1’hat is, the real and imaginary components of
the IT which forms the F’]’ magnitude envelope at the frequency, m, are used. Thus, the term ~m

used in equation (2) to derive the inverse 1:’1’ at each frequency is given by ~m,z  where:
N- 1

2rLttlll
A’ 1

x

2mml
X =- ifi,z COS- ~ i ~in,z sill- ;ltl~  0,1, . . . . . . . N - 1

nt, z A N
n- o no

and the subscript z refers to the Fourier transfol m having the largest amplitude at the frequency
increment m.

ICXAM  1’1 ,It

(s)

“1’hc  IIFT algorithm used here required A’ to be equal to two raised to some power. The time history
transients described here had 802 time points taken at a sampling rate of S00 points per second.
“J’hcrcforc the DFT analyses used 1024 for the value ofN l’he sampling rate yielded an upper
frequency limit of 400 IIz and the 1024 sample points yielded a ficquency  resolution of 0.781 IIz.

3



The DFI”S obtained from the transients of];igurcs  1 and 2 are shown in Figures 3 and 4. These are
2-sidccl  Fourier spectra, with only the positive frequency axis shown. ‘J’hc negative frequency axis is
the mirror image of the positive one and is not shown. The amplitude observed is therefore only half
of what is normally displayed in a 1-sided l;ouricr-magnitude spectrum. No windowing was applied
to the DFT analysis. These Fourier transforms were cnve]oped  by the amplitude spectrum shown in
lrigure 5.

‘l’he time history at the top of Figure 6 was derived by taking the inverse Fourier transform ofthc
spcct rum of Figure 5. A small DC correction was applied to the transient to counteract the DC
offset present. The associated velocity and displacement time histories are also shown in Figure 6.

~’he displacement change in Figure  6 is beyond the capability of most elcctrodynamic  shakers. The
displacement and velocity changes were brought within bounds by subtracting a low frequency
compensating pulse from the transient time history [3]. This compensation pulse takes the form:

U(t) Ae - “’’’(’””) sinco ,,(f + T) ( 6 )

where U(f) is a unit step fllnction,  i.e., U(i) ~ O for I <0
= lfor/>0,

~ is the decay rate, z is the time delay, A is the amplitude and w,, is the pulse frequency.

The parameters ofthc compensation pLllsc wet-e iteratively adjusted to minimize the residual  velocity
and displacement of the transient. ‘1’his required a compensation pulse with a 9g amplitude (A) at 10
IIz with a time delay of 0.1 seconds and a decay rate of 0.5. The amplitude ofthc compensation
pulse is not fldly reflected in the displayed compensation pulse due to the exponential and sine terms
in equation 6. As seen from Figure 7, this pulse does not adversely affect the format ofthc transient
and minimizm  the velocity and displacement changes.

CON SI:I<VA’I’ISM

A transient has been derived that contains all the frequency cent cnt of the ten original transients.
‘J’hc conservatism obtained by using this single test transient al all ten original locations can be
measured quantitatively [7]. ‘J’hc conservatism is the amount by which the test response exceeds
(ovcrtcsl) the flight response of the test article. Conservatism is measured by a so-called index of
conservatism (1X’),  which is defined by:

(7)

where ~f is the mean margin of conservatism and ~l. and LF arc the mean transient

characterization values for the test (7’) and flight (}”) environments, and OJ, , OT. and OF arc the
corresponding standard deviations. Positive atld  negative values of IOC indicate ovcrtest and
undcrtest  respectively. l’hc IOC actually measures the probability ofachicving  an over-test given the
statistics of the test and flight environments. l’or instance IOC values of zero, one and two
correspond to 50, 84.1 and 97.9 percent probabilities that an overtcst  will occur. ‘l’he amount of
overtcst  is quantified by the overtcst  factor (07’fi’)  described in reference [7]:
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(8)
L].,,

The 0“1’1~ defines how many times greater the actual mean test characterization, ~,. , is than the

desired mean test characterization, ~,.,, , having an index of conservatism of 1. This desired mean

test characterization may be calculated by using equations 7 and 8, as described elsewhere [7]. The
response of spacecraft components to the transients is described by the shock response spectrum
(S1{S), which is a measure of the response ofa single-degree-of-freedom system to a transient input.
Therefore the response of an elastic system attachccl  to the spacecraft structure at any location can
be assessed by producing an SRS from the expected flight transient at that same location. The
response ofthc same elastic system due to the synthesized transient can also be assessed using the
S1{S characterization. A comparison of these two (S1<S) spectra will determine the conservatism of
the synthesized test transient relative to the expected flight transient. Figure 8 shows clearly how the
SRS of the synthesized transient (dcpctsrs)  envelopes the S1<S’s of all the flight transients. This is a
good indication that the synthesized transient is valid. F’igures 9 and 10 show the overtest  factors
(OTF) obtained using the synthesized transient at each location, as a function of frequency. An
index of conservatism (IOC) of unity was used in the 03’F calculation, An overall 0“1’F may be
calculated by averaging the OTJi over the frequency axis. ‘1’his simplifies the overtcsl  to a single
number as shown in Table 2.

Some locations show a large dcgrcc  of ovcrtest,  as shown by a large O’l’l;. ‘1’his behavior is expected
with a generic test transient that attempts to encompass several different spacecraft locations. The
1<3’G  locations show much larger dcgrccs  of ovcr[cst than the other locations. ‘1’his is expected
because the flight transients at these locations are much smaller than those at the non-Rrl’G locations.
~’hc larger transients contained in the Fourier ‘1’ransform envelope obviously dominate the response
produced by the synthesized transient.

I’AIII.E  2- lkqucncy  Averaged  OrJ’l~

1401 I 1.21

41419 1.23
0401 1.39
0419 I 1.42 —.
1414 I 3.18

-+

1417 4.91
0417 5.89 I

Another way of obtaining a time-domain signal from the Fourier transform amplitude envelope of
l?igure 5, is to assume a random phase distribution along the frequency axis. The phase is defined as
the inverse tangent of the ratio ofthc imaginary to real 1;”1’ components, This was done five times

s



with the phase bounded bctwccn  1 and 360 degrees. ‘1’his produced the time histories shown in
}lgure 11, which appear more like portions of I andom signals, This is because the inverse Fourier
transform of l;ouricr  magnitudes with random phase will always produce a stationary segment of a
Gaussian random signal and not a transient, ‘J’his is the procedure used by random vibration test
machine controllers to produce stationary random vibrations with a desired power spectrum [8].

CONCL(JS1ONS

A unique method of producing a test transient time history from the Fourier transform envelope of
several flight transients has been demonstrated. ‘1’hc ovcrtest  associated with using such a transient
has been quantified using the ovcr(cst factor, B-y using the real and imaginary components ofthc
Fourier transform constituting the spectrum envelope, a valicl  synthesized test transient can be
produced.
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Transient from FFT Envelope
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Figure 11. Random-Phase Signals


